Механика и Аэродинамика

Аэродинамика

Аэродинамика является одним из наиболее важных аспектов современного болида Формулы-1. Огромная часть бюджетов команд тратится на моделирование воздушных потоков обтекающих машину сверху, снизу и по бокам. Задачей этих исследований является не только добиться от набегающего потока создания прижимной силы при минимальном коэффициенте сопротивления, но также заставить его (поток) работать на охлаждение некоторых систем, включая тормоза, двигатель и трансмиссию. В основном, во время проведения Гран-При, из аэродинамических элементов регулировкам подвергаются углы установки крыльев и высота дорожного просвета (клиренс)

Крылья

Крылья на машине Формулы-1 на самом деле не являются крыльями в прямом значении, так как они не создают прижимную силу исключительно за счёт разности скоростей обтекающих их воздушных потоков (на автомобилях американских серий CART и IRL на суперспидвеях действительно используются профилированные крылья). Крылья в Формуле-1 являются скорее спойлерами, рассекающими и завихряющими набегающий воздушный поток. Этот воздушный поток, таким образом, создаёт прижимную силу за счёт аэродинамического сопротивления (трения).

Угол установки заднего крыла - это всегда компромисс между прижимной силой на задней оси и максимальной скоростью. Больший угол обеспечивает большую прижимную силу, но также и создаёт значительно большее сопротивление, тем самым серьёзно снижая максимальную скорость автомобиля. При установке угла заднего крыла вам следует добиваться максимально возможной прижимной силы, но так, чтобы это не влияло на способность автомобиля достигать конкурентоспособного значения максимальной скорости.

Переднее крыло не создаёт такого значительного сопротивления при движении, даже при установке на максимальный угол. Таким образом, следует использовать максимально возможное значение угла атаки переднего крыла, насколько это возможно, не нарушая баланса между осями машины. Случается, хотя и не очень часто, что угол переднего крыла изменяют во время гонки на пит-стопе.

Угол заднего крыла: определяет баланс между прижимной силой и максимальной скоростью на прямых.
Угол переднего крыла: определяет баланс между передней и задней частью автомобиля.

Охлаждение двигателя и тормозов

Те же самые потоки воздуха, что обтекают машину во время движения, перенаправляются на охлаждение радиаторов и тормозов. Воздухозаборники охлаждения тормозов (Brake ducts) расположены внутри каждого колёсного узла, и слегка выступают вперёд. Они необходимы для усиления и направления воздушного потока на тормозные диски, и имеют семь вариаций размера. Позже, в разделе, посвящённом износу тормозов, мы рассмотрим также их (тормозов) температуру и охлаждение.
По бокам машины расположены воздухозаборники радиаторов двигателя и трансмиссии. В зависимости от условий трассы и размеров радиаторов, сечение воздухозаборникров может изменяться. Чем меньше отверстие, тем меньше сопротивление воздуха создаётся при прохождении набегающего потока сквозь конструкции кузова, но и тем хуже охлаждаются радиаторы. Здесь также следует заметить, что двигатель работает наиболее эффективно при рабочей температуре 107.3 °C. Перегрев двигателя наступает при температуре 120.6 °C, а при 123.9 °C срок службы мотора уменьшается вдвое.

Блокировка дифференциала (Differential lock)

На машины Формулы-1 устанавливаются дифференциал с ограниченным скольжением. Это значит, что степень разобщения между ведущими колёсами может варьироваться. Степень жёсткости ("блокировки" по определению ФИА) дифференциала описывает степень крутящего момента, передаваемого на оба колеса по отношение к каждому в отдельности. При блокировке равной 100% обе полуоси жёстко соединены друг с другом, и крутящий момент делится между колёсами строго пополам. При 0% блокировки, в случае изменения на одном колесе сцепления с дорогой (например, при заезде одной стороной машины на траву), дифференциал сдвигает крутящий момент от колеса с меньшим коэффициентом сцепления.
Следует понимать, что, поскольку этот процесс – механический, дифференциал не в состоянии переместить большое количество крутящего момента на одно из колёс. Другими словами, касательно блокировки дифференциала на машине Формулы-1, на колёса ВСЕГДА будет передаваться огромный крутящий момент. Даже при использовании 0% блокировки дифференциала, сдвиг крутящего момента от одного колеса на другое будет происходить в не в полной мере.
Описывая эффект от блокировки дифференциала, люди склонны использовать термины "избыточная и недостаточная поворачиваемость". На самом деле этот параметр влияет только на избыточную поворачиваемость. Недостаток избыточной поворачиваемости лишь подвигает машину в сторону недостаточной поворачиваемости не вызывая недостаточной поворачиваемости как таковой, этот термин используется лишь для описания эффекта. Ниже приведены результаты испытаний крайних настроек блокировки дифференциала в повороте постоянного радиуса:

Differential Lock @ 0%
Избыточная поворачиваемость (занос заднего моста) под сброс газа - Высокая
Избыточная поворачиваемость (занос заднего моста) при нажатии на газ - Нулевая
Differential Lock @ 100%
Избыточная поворачиваемость (занос заднего моста) под сброс газа - Нулевая
Избыточная поворачиваемость (занос заднего моста) при нажатии на газ – Высокая

В справедливости этих результатов можно убедиться на "Тестовом треке" RSDG (ели у вас ещё нет этой трассы, раздобудьте её обязательно). Под нажатием на газ подразумевается полное нажатие педали при движении с равномерной скоростью 130-145 км/ч на второй передаче в повороте радиусом 80 м. Отпускание газа, в свою очередь предполагает полное отпускание педали в том же режиме движения.

Обратите внимание на последнюю часть: отпускание газа это как раз то, что происходит при приближении к повороту на гоночной трассе. Вы отпускаете газ, резко жмёте на тормоз, начинаете поворачивать. Установите блокировку на 0% и прочувствуйте, как участились случаи разворотов на входе в поворот. Это оттого, что дифференциал помогает максимально эффективно распределять крутящий момент при экстремальных торможениях и резких поворотах. В результате вес переносится вперёд гораздо быстрее, чем при высокой степени блокировки дифференциала. Даже в процессе торможения при входе в поворот, крутящий момент двигателя остаётся одним из важных факторов влияющих на трансфер веса машины.
Тем не менее, если вам удалось вписаться в поворот, то затем, на выходе, вы можете нажимать на газ сильнее и раньше. Это потому, что меньшая степень блокировки дифференциала, позволяет балансировать сцепление колёс с трассой при обратном перемещении веса на заднюю ось, обеспечивая "максимально возможное ускорение".
На первый взгляд это противоречит тому, что многие ранее могли читать на разных форумах. Но поверьте мне, опробуйте крайние настройки на тестовой трассе… вы сами убедитесь.
Высокая степень блокировки дифференциала – это совсем иная зверюга. Машина гораздо стабильнее на торможениях, но очень капризна при добавлении газа на выходе из поворота. Опять же, это происходит из-за того, что задние колёса теперь жёстко "связаны" друг с другом, и на них передаётся одинаковый крутящий момент независимо от распределения нагрузки.
При установке исходных настроек перед первым выездом на трассу, следует установить блокировку дифференциала на 50%. Это нейтральное значение. Кроме этого, это зависит от вашего стиля пилотажа, также как и все прочие регулировки. Думайте об этом так: "не важно, предпочитаю ли я избыточную поворачиваемость, важно КОГДА она возникает, и насколько сильна". И передвиньте ползунок регулировки в нужном направлении.
Вот пример: в сетапах "по умолчанию" (т.н. дефолтных от англ. default, т.е. поставляемых вместе с игрой) установлена низкая степень блокировки (25-35%). Это обеспечивает стабильность машины на выходе из поворота и при ускорениях, но при поздних торможениях на входе в поворот автомобиль ведёт себя очень нервно.
С другой стороны, французский гонщик Жан Алези известен как мастер управляемых газом скольжений. Он постоянно управляет машиной с обоих концов. Представьте: Алези, приближаясь к повороту "Параболика" (Монца), тормозит очень поздно, благодаря настройкам на стабильность при торможении. Затем нажимает на газ чуть раньше апекса, этого очень скоростного поворота, используя, вызванные этим небольшие соскальзывания заднего моста для того чтобы направлять нос машины внутрь поворота до тех пор, пока не появиться возможность полностью вдавить педаль "в пол" на второй части поворота, вылетая на прямую "старт-финиш" словно ракета.
Вот так. Для него это - раз плюнуть!
"Настраивая машину на определённую трассу, пилот должен быть максимально сконцентрирован. Прежде всего, следует зафиксировать три стадии поворота. Затем, определив ориентиры и правильную траекторию, он должен стараться, как можно точнее отрабатывать их. При разном прохождении кругов машина тоже ведёт себя по разному, что создаёт дополнительные проблемы. Как только пилот выучит трассу, он должен быть способен пройти несколько кругов с одинаковым временем. Если каждый следующий круг похож на предыдущий, у пилота появляется больше возможностей для объективного анализа. Практически пилот сам становится ориентиром. Это требует огромного внимания к мелочам, но, совершая один одинаковый круг за другим, вы становитесь отличным тест-пилотом."

Из книги Алена Проста и Пьера-Франка Руссе "Спортивное вождение".

Ещё про Дифференциал читайте в разделе "Коробка передач"

Стабилизаторы (Anti-roll bars)

Таким образом, каждое колесо контролируется независимым комплектом, состоящим из пружины, амортизатора и буфера. Но, даже не смотря на то, что все четыре колеса подвешены к кузову независимо, большинство регулировок этих компонентов выполняется симметрично относительно продольной оси автомобиля. То есть параметры для передних пружин/амортизаторов и для задних пружин/амортизаторов устанавливаются одинаково. За счёт этого подвеска великолепно отрабатывает нагрузки связанные с трансфером веса вперёд-назад, а также вызванные неровностями дорожного полотна. Но при этом она не очень хорошо справляется с нагрузками, возникающими в повороте, при переносе веса с внутренних колёс на наружные. В результате, при прохождении поворота внутренние колёса разгружаются и теряют сцепление с дорогой, в то время как внешние перегружены. В этот момент и начинают работать стабилизаторы.

Стабилизаторы разных размеров
Место крепления заднего стабилизатора
Предний стабилизатор, установливается в носу машины

На современных машинах Формулы-1 стабилизаторы, также как и пружины, являются торсионами. Вот как это работает: стабилизатор продольно соединяет левые и правые пружины и амортизаторы. При вертикальном перемещении кузова при наезде на неровности (вверх-вниз), подвеска с обеих сторон работает одинаково, стабилизаторы просто "проворачиваются" в том же направлении, практически не оказывая эффекта. Однако в повороте, вес переносится с внутренней стороны машины на внешнюю. Внутреннее колёсо перемещается относительно кузова вниз, разгружая (растягивая) пружину, в то время как внешнее перемещается вверх (помните вес переносится с внутренней стороны на внешнюю), соответственно внешняя пружина вбирает в себя больше энергии. Это приводит к тому, что концы стабилизатора закручиваются в разных направлениях. Таким образом, он ограничивает крен машины и перемещение элементов подвески за счёт ограничения перемещения пружин и амортизаторов в противоположных направлениях, и передает некоторое количество веса на внутреннее колесо.
Жёсткость стабилизаторов можно изменять. Диапазон регулировки составляет от 100 до 200 н/мм для переднего и от 50 до 130 н/мм для заднего, с шагом в 5 н/мм. Заметили, что передний стабилизатор гораздо жёстче? Обычно передний стабилизатор, также как и передние пружины, устанавливают жестче, чем задние. Это обеспечивает лучшую реакцию передней оси при входе в поворот, и лучшее сцепление задней оси при ускорении на выходе из поворота.

Стабилизаторы (основное назначение): ограничивают боковые крены кузова при продолжительных боковых нагрузках во время прохождения поворотов.
Передний стабилизатор: следует устанавливать как можно жёстче, для большей стабильности при входе в поворот.
Задний стабилизатор: следует устанавливать как можно мягче, для лучшего сцепления колёс с трассой при ускорении на выходе из поворота.

Распределение веса по осям (weight distribution)

Минимальный разрешённый ФИА вес автомобиля Формулы-1 составляет 600 кг, но все конструкторы, стараются, чтобы автомобиль весил меньше этой величины. Во время официальных соревнований недостающий вес добирается за счёт балласта, с помощью которого, можно точнее регулировать распределение веса по осям машины. Так что во время тестов, большинство машин Формулы-1 весят даже меньше чем машины Формулы-3.
С введением более жёстких правил безопасности в последнее время, для предотвращения травм пилота при аварии, расположение кокпита было смещено ближе к задней оси. Это в свою очередь привело к увеличению веса, приходящегося на заднюю ось. Казалось бы, возникший дисбаланс можно компенсировать за счёт перемещения балласта, но это на самом деле не так, и вот почему. Правилами установлено, что балласт должен быть жёстко закреплён на машине, и не может перемещаться. Это означает, что машины Ф-1 не могут получить дополнительного преимущества, за счет применения систем изменяющих центровку машины, а напротив, балласт должен быть распределён по автомобилю в специальных отсеках. Это некоторым образом ограничивает возможности.
Идеальным материалом для балласта являются пластины обеднённого урана или малория. Эти вещества обладают очень высокой плотностью, и их высокий вес при малых размерах, является идеальным способом для команд, соблюсти требования регламента, при этом оставляя некоторые возможности для варьирования их размещения как можно ближе к передней оси. Вписывание отсеков для балласта в компоновку машины – задача весьма не простая. Большинство отсеков расположено в носу машины, под ногами пилота. Заднее расположение двигателя и трансмиссии, делает применение балласта в задней части машины бессмысленным, так как основной вес и так приходится на заднюю ось.
Поэтому распределение веса – занятие очень не простое. Обычно вес улучшает сцепление с дорогой той оси, в сторону которой он сдвинут. Это значит, что если вес смещён в сторону задней оси, то на переднюю будет приходиться меньшая нагрузка, в итоге увеличивая недостаточную поворачиваемость машины. Сдвиньте его вперёд, и меньше веса будет передаваться на задние колёса при ускорении. И конечно, это всё зависит напрямую от того, насколько хорошо сбалансирована подвеска машины, в первую очередь пружины и амортизаторы. С учётом этого, распределение веса является инструментом окончательной, "точной" настройки машины. Обычно, установка распределения веса это один из финальных штрихов настройки, и порой это последнее небольшое усилие превращает неповоротливую машину в послушную лапочку.
В симуляторе изначальные развесовки машин различны. Это объясняется различным весом двигателей и конструкциями шасси. Балласт можно сдвигать на 5% вперёд или назад.